PROFESSOR PAULO CESAR |
PORTAL DE ESTUDOS EM QUÍMICA |
|
|
GRANDEZAS QUÍMICASGRANDEZAS - CONCEITOGrandeza pode ser definido com tudo aquilo que pode ser medido, como por exemplo: tempo → segundos, minutos, horas, dias, etc. volume → litros, metros cúbicos, mililitros, etc. massa → gramas, toneladas, quilogramas, etc. A medida de uma grandeza é feita por comparação com uma grandeza padrão convenientemente escolhida. Desta forma, a medida de massa de um corpo é feita comparando-se a massa de um determinado corpo com a massa de um padrão adequadamente escolhido. Quando se diz que uma determinada pessoa possui uma massa de 65 kg, podemos interpretar este resultado como da seguinte maneira: a pessoa possui uma massa 65 vezes maior do que o padrão utilizado para medir a sua massa, ou seja, 1 kg. Dependendo da quantidade de matéria utilizamos uma determinada grandeza para medir a sua massa. Por exemplo:
E para medir a massa de um átomo ou uma molécula qual será a grandeza utilizada?
UNIDADE DE MASSA ATÔMICA (U) Átomos individuais são muito pequenos para serem vistos e muito menos pesados. Porém, é possível determinar as massas relativas de átomos diferentes, quer dizer, podemos determinar a massa de um átomo comparando com um átomo de outro elemento utilizado como padrão. Em 1961, na Conferência da União Internacional de Química Pura e Aplicada (IUPAC), adotou-se como padrão de massas atômicas o isótopo 12 do elemento carbono (12C), ao qual se convencionou atribuir o valor exato de 12 unidades de massa atômica. Uma unidade de massa atômica (1 u) corresponde desta forma a de massa de um átomo de isótopo 12 do carbono. Portanto:
Obs.: O valor de 1 u é de 1,66 · 10–24 g, o que corresponde aproximada-mente à massa de um próton ou de um nêutron.
Massa Atômica (MA) Massa atômica é o número que indica quantas vezes a massa de um átomo de um determinado elemento é maior que 1u, ou seja, do átomo de 12C. Comparando-se a massa de um átomo de um determinado elemento com a unidade de massa atômica (1u), obtém-se a massa desse átomo. Exemplo Quando dizemos que a massa atômica do átomo de 32S é igual a 32 u, concluímos que: – a massa atômica de um átomo de 32S é igual a 32 u; – a massa atômica de um átomo de 32S é igual a 32 vezes a massa de do átomo de C-12; – a massa de um átomo de 32S é igual a 2,7 vezes a massa de um átomo de C-12. Observação O aparelho utilizado na determinação da massa atômica chama-se espectrômetro de massa. A medida é feita com grande precisão e o processo de determinação da massa do átomo é comparativo com o padrão, ou seja, o átomo de carbono-12. Massa Atômica de um Elemento A maioria dos elementos apresenta isótopos. O cloro, por exemplo, é constituído por uma mistura de 2 isótopos de massas atômicas, respectivamente, 35 e 37.
A massa atômica do cloro é dada pela média ponderada das massas isotópicas:
Portanto:
Sendo assim, a massa atômica de um elemento hipotético A, constituído dos isótopos naturais A1, A2, ...., An, pode ser calculada por:
Exemplo Quando dizemos que a massa atômica do elemento cloro é 35,5 u, concluímos que: – cada átomo do elemento cloro possui massa, em média, de 35,5 u; – cada átomo do elemento cloro possui massa, em média, 35,5 vezes maior que da massa do C-12.
Massa Molecular (MM) Os átomos reúnem-se para formar moléculas. A massa dessas moléculas é a soma das massas atômicas dos átomos constituintes. Como as moléculas são formadas por um grupo de átomos ligados entre si, o padrão usado como base para relacionar as massas dessas moléculas é o mesmo usado para os átomos: a unidade de massa atômica (u). Exemplo: C6H12O6 (C=12, H=1, O=16) MM = 6 . 12 + 12 . 1 + 6 . 16 MM = 72 + 12 + 96 MM = 180 u Significado: Cada molécula de C6H12O6 possui massa de 180 u, ou seja, 180 vezes maior que 1/12 do carbono-12. Portanto:
ou ainda...
Vejamos outro exemplo: Quando dizemos que a massa molecular da água H2O é 18 u, concluímos que: • a massa de uma molécula H2O é igual a 18 u; a massa de uma molécula H2O é 18 vezes mais pesada que do átomo de carbono-12; • a massa de uma molécula de água é 1,5 vezes mais pesada que um átomo de C-12.
Constante de Avogadro (N) Sejam as seguintes amostras: 12 g de carbono, 27 g de alumínio e 40 g de cálcio. Experimentalmente verifica-se que o número de átomos N, existentes em cada uma das amostras, é o mesmo, embora elas possuam massas diferentes. Porém, quantos átomos existem em cada uma dessas amostras? Várias experiências foram realizadas para determinar esse número conhecido como número de Avogadro (N) e o valor encontrado é igual a:
Assim, o número de Avogadro é o número de átomos em x gramas de qualquer elemento, sendo x a massa atômica do elemento, portanto existem: • 6,02 · 1023 átomos de C em 12 g de C (MAC = 12 u); • 6,02 · 1023 átomos de Al em 27 g de Al (MAAl = 27 u); • 6,02 · 1023 átomos de Ca em 40 g de Ca (MACa = 40 u).
Saiba mais sobre..... Como foi determinado o Número de Avogadro Rutherford determinou o número de Avogadro contando as partículas α (alfa) emitidas pelo rádio. Cada partícula α se transforma em um átomo de hélio e elas são emitidas com tanta energia que cada uma produz um sinal visível, numa placa de sulfeto de zinco (ZnS). Isso permite contá-las e, portanto, saber quantos átomos de hélio a amostra de rádio produz em um determinado intervalo de tempo. Rutherford encontrou que 1 g de rádio produz cerca de 7,7 · 10–6 g de hélio em um ano e calculou que, nesse tempo, 1 g de rádio emitiria 11,6 · 1017 partículas α (e, portanto, 11,6 · 1017 átomos de hélio). Sendo assim ficamos com: 7,7 . 10-6 g de He → 11,6 . 1017 átomos de He 4 g (He) → N Onde: N = 6,02 . 1023 átomos
Conceito de Mol Segundo a União Internacional da Química Pura e Aplicada (IUPAC), mol é a quantidade de matéria que contém tantas entidades elementares quantos são os átomos de carbono-12 contidos em 0,012 kg do C-12. Constante de Avogadro é o número de átomos de
C-12 contidos em 0,012 kg de C-12 e seu valor é Portanto:
Sendo que, por exemplo: • 1 mol de laranjas contém → 6,02 · 1023 laranjas; • 1 mol de grãos de areia contém → 6,02 · 1023 grãos de areia; • 1 mol de átomos contém → 6,02 · 1023 átomos; • 1 mol de moléculas contém → 6,02 · 1023 moléculas; • 1 mol de íons contém → 6,02 · 1023 íons; • 1 mol de elétrons contém → 6,02 · 1023 elétrons, etc.
Massa Molar (M) Massa Molar de um Elemento A massa molar de um elemento é a massa em gramas de 1 mol de átomos, ou seja, 6,02 · 1023 átomos desse elemento. A massa molar de um elemento é numericamente igual à sua massa atômica expressa em gramas. Exemplo: Al (MA = 27 u)
Massa Molar de uma Substância A massa molar de uma substância é a massa em gramas de 1 mol de moléculas da referida substância. A massa molar de uma substância é numericamente igual à sua massa molecular expressa em gramas. Exemplos a) CO2 (C = 12 u ; O = 16 u) MM = 1 · 12 + 2 · 16 Logo, ficamos com:
b) NaCl (Na = 23; Cl = 35,5) MM = 1 · 23 + 1 · 35,5 Logo, ficamos com:
Massa Molar de um Íon A massa molar de um íon é a massa de 1 mol de íons em gramas que é numericamente igual à massa de íon expressa em gramas. Exemplo: Logo, ficamos com:
Quantidade de Matéria ou Quantidade em Mols (n) Exemplo 1 Quantos mols de átomos correspondem a 280 g de ferro? (Fe = 56 u) Resolução:
Quantos mols de moléculas correspondem a 88 g de dióxido de carbono (CO2)? (C = 12u, O = 16 u) Resolução:
Concluímos, portanto, que estes cálculos podem ser generalizados pela fórmula:
Onde temos: • n = quantidade em mols
Este site foi atualizado em 04/03/19 |