Causas e conseqüências da precipitação ácida
Na ausência de qualquer contaminante atmosférico, a água precipitada pela chuva é levemente ácida, sendo de esperar um pH de aproximadamente 5,2 a 20 ºC, valor inferior ao que resultaria se a solução ocorresse em água destilada (pH = 5,6) devido à presença de outros compostos na atmosfera terrestre não poluída[2]. Essa acidez natural, apesar de localmente poder ser influenciada pela presença de compostos orgânicos voláteis e de óxidos de nitrogênio gerados por trovoadas, resulta essencialmente da dissociação do dióxido de carbono atmosférico dissolvido na água, formando um ácido fraco, conhecido como ácido carbônico, segundo a reação:
O ácido carbônico sofre ionização em solução aquosa, formando baixas concentração acidificantes de íons hidrônio:
A ionização acima referida ocorre tanto nas gotículas de água atmosférica (nas nuvens, nevoeiros e neblinas), na água existente na superfície de gelos ou cristais de neve e ainda no orvalho e na água adsorvida em partículas sólidas em suspensão no ar. É devido a essa multiplicidade de vias de formação que o termo chuva ácida, apesar de muito difundido, deve ser preferencialmente substituído por deposição ácida, já que a acidificação da precipitação, com todas as conseqüências ambientais resultantes, pode ocorrer na ausência de chuva.
Em resultado dessa acidez natural, o limite para se considerar a precipitação como ácida é em geral um pH inferior a 4,5 (a 20 °C), o que corresponde a precipitação que contém concentrações mensuráveis de um ou mais ácidos fortes e que pela sua acidez causa comprovados efeitos negativos sobre as plantas, os organismos vivos aquáticos e as estruturas construídas e equipamentos com os quais entre em contacto.
Origem da acidez acrescida
A acidez acrescida que está na origem da precipitação ácida resulta na sua maior parte da interação dos componentes naturais da atmosfera terrestre com poluentes primários, entre os quais avultam os óxidos de nitrogênio e os óxidos de enxofre, os quais reagem com a água atmosférica para formar ácidos fortes como sejam o ácido sulfúrico e o ácido nítrico. A principal fonte desses poluente primários é a queima de combustíveis fósseis para produção de energia térmica, energia elétrica e para a propulsão de veículos.
Embora existam processos naturais que contribuem para a acidificação da precipitação, com destaque para os gases lançados na atmosfera pelos vulcões e os gerados pelos processos biológicos que ocorrem nos solos[3], pântanos e oceanos, as fontes antrópicas, isto é resultantes da ação humana, são claramente dominantes. A prova dessa predominância foi obtida pela determinação da diferença entre a acidez da precipitação nas zonas industrializadas e em partes remotas do globo, pela comparação da acidez atual com o registro deixado pela captura da precipitação no gelo dos glaciares ao longo de milhões de anos e pelo registro deixado nos fundos de lagos e oceanos pela deposição de restos orgânicos indiciadores das condições de acidez prevalecentes.
A análise das camadas de gelo depositadas em glaciares e nas calotas polares mostram uma rápida diminuição do pH da precipitação a partir do início da Revolução Industrial, passando em média de 5,6 para 4,5 ou mesmo 4,0 nalgumas regiões, mostrando um forte acidificação. Igual conclusão é retirada da análise da prevalência de espécies de diatomáceas em camadas de sedimento recolhidos do fundo de lagos, confirmando a correlação entre a industrialização e a diminuição do pH da precipitação.
As principais fontes humanas dos gases poluentes primários são as indústrias, as centrais termoelétricas e os veículos de transporte motorizado. Os gases libertados podem ser transportados na circulação atmosférica por muitos milhares de quilômetros antes de reagirem com gotículas de água, originando então os compostos que acidificam a precipitação.
A sua natureza transfronteiriça, já que a circulação atmosférica dispersa os efeitos ao longo de grandes áreas da Terra, leva a que também afete as regiões sitas a jusante do seu ponto de emissão no sistema de circulação atmosférica, levando a que áreas onde as emissões não são significativas possam ser severamente prejudicadas pela precipitação de poluentes gerados a montante.
História da chuva ácida
As emissões de dióxido de enxofre e de óxidos de nitrogênio têm crescido quase continuamente desde o início da Revolução Industrial[4] [5]. Robert Angus Smith, num estudo realizado em Manchester, Inglaterra, fez em 1852 a primeira demonstração da relação entre a acidez da chuva e a poluição industrial[6], cunhando em 1872 a designação chuva ácida[7].
Apesar da relação entre precipitação ácida e poluição do ar ter sido descoberta em 1852, o seu estudo científico sistemático apenas se iniciou nos finais da década de 1960[8]. Harold Harvey, professor de Ecologia na Universidade de Toronto, publicou em 1972 um dos primeiros trabalhos sobre um lago "morto" em resultado da acidificação das suas águas pela deposição ácida, trazendo a questão da chuva ácida para a ribalta da política ambiental.
O interesse público pelos efeitos da chuva ácida iniciou-se na década de 1970, a partir dos Estados Unidos da América, quando o New York Times publicou os resultados obtidos em estudos feitos na Hubbard Brook Experimental Forest (HBES), em New Hampshire, que demonstravam os múltiplos danos ambientais que a acidez da precipitação estava a causar[9][10].
Ao longo das últimas décadas têm sido reportadas leituras de pH na água de gotas de chuva e em gotículas de nevoeiro, colhidas em regiões industrializadas, com valores inferiores a 2,4 (a mesma acidez do vinagre)[4].
A precipitação ácida com origem industrial é um sério problema em países onde se queimam carvões ricos em enxofre para gerar calor e eletricidade[11], como a China[12][13] e a Rússia. Embora com outras origens, com destaque para o tráfego automóvel, o problema afeta vastas regiões da Europa e da América do Norte.
O problema da precipitação ácida tem crescido com o aumento da população e com a industrialização, abrangendo áreas crescentes do planeta, com destaque para a Índia e o sueste asiático. O uso de altas chaminés industriais para dispersar os gases emitidos tem contribuído para aumentar as áreas afetadas, já que os poluentes são injetados na circulação atmosférica regional, atingindo vastas áreas a sotavento do ponto de emissão[14][15]. Em resultado, é comum a deposição ocorrer a considerável distância do ponto de emissão, com as regiões montanhosas a receberem a maior parte da acidez precipitada (simplesmente por serem áreas de maior precipitação devido às chuvas de montanha). Um exemplo destes efeitos é a grande acidez da precipitação na Escandinávia quando comparada com as emissões relativamente baixas ali produzidas [16].
Origem e formação dos compostos ácidos
Embora a amônia e os compostos orgânicos voláteis, com destaque para o dimetilsulfureto (DMS) de origem oceânica[17] e o ácido fórmico nalgumas regiões de floresta tropical, contribuam para a acidez da precipitação, os dois principais grupos de compostos que geram a acidez da precipitação são os óxidos de nitrogênio e os óxidos de enxofre, com predominância para estes últimos, os quais são esmagadoramente de origem antrópica.
Os óxidos de enxofre
A principal causa de acidificação da precipitação é a presença na atmosfera de óxidos de nitrogênio (SOx), com destaque para o dióxido de enxofre (SO2), um gás proveniente da oxidação de compostos de enxofre (S) contidos nos combustíveis fósseis e na matéria orgânica que é queimada. Outra importante fonte de gases contendo enxofre são as emissões dos vulcões.
Apesar das crescentes restrições ao consumo de combustíveis ricos em enxofre sem os adequados mecanismos de controlo das emissões, estudos recentes estimam as quantidades emitidas de SO2 (expresso em S elementar) em cerca de 70 000 000 toneladas/ano (70 Teragramas/ano) a partir da queima de combustíveis fósseis, 2 800 000 toneladas/ano (2,8 Tg/ano) a partir da queima de biomassa, em especial por fogos florestais, e cerca de 8 000 000 toneladas/ano (8 Tg/ano) em resultado de emissões vulcânicas[18].
Na fase gasosa o dióxido de enxofre é oxidado por adição do radical hidroxila via uma reação intermolecular:
que é seguida por:
na presença de água líquida nas gotículas das nuvens, nevoeiros e outras formas de condensação atmosférica, o trióxido de enxofre (SO3) é rapidamente convertido em ácido sulfúrico:
Para além das reações atrás apontadas verificam-se outras, em meio aquoso, as quais levam a que o ritmo de perda de SO2 na presença de nuvens seja substancialmente maior do que o verificado em meio gasoso. Tal deve-se à hidrólise nas gotículas de água, na qual o dióxido de enxofre dissolvido, num processo similar ao descrito para o dióxido de carbono, hidrolisa numa série de reações de equilíbrio químico:
No meio atmosférico ocorrem numerosas reações aquosas que oxidam o enxofre (S) do estado de oxidação S(IV) (S+4) para o estado de oxidação S(VI) (S+6), levando à formação de ácido sulfúrico (H2SO4), um dos mais fortes ácidos conhecidos. As reações mais importantes, muitas delas com uma forte componente fotoquímica, ocorrem com o ozônio (O3), peróxido de hidrogênio (H2O2) e oxigênio (O2). As reações com o oxigênio são catalisadas por traços de ferro e manganês presentes nas gotículas das nuvens[6].
Óxidos de Nitrogênio
Apesar do nitrogênio (N2) ser o gás mais abundante na composição da atmosfera da Terra, aquele elemento na sua forma biotômica é muito pouco reativo. Para reagir com o oxigênio gasoso precisa de grande quantidade de energia sob a forma de altas temperaturas e pressões ou uma via catalítica adequada. Para além da conversão bioquímica que ocorrem em organismos especialmente adaptados à fixação do nitrogênio, na natureza a oxidação do nitrogênio apenas ocorre nas descargas elétricas das trovoadas, fazendo dos óxidos de nitrogênio compostos em geral pouco comuns. Esta situação alterou-se profundamente nas regiões industrializadas com a introdução dos motores a explosão. Naqueles motores, as pressões e temperaturas cridas no interior dos cilindros levam à oxidação do nitrogênio do ar ali injetado, formando uma complexa mistura de óxidos de nitrogênio, em geral designados por NxOx, que é libertada para a atmosfera com os gases de escape. São estes gases que, reagindo com os componentes da atmosfera, em particular com a água, formam ácido nitroso (HNO2) e ácido nítrico (HNO3), ácidos fortes que contribuem poderosamente para a acidificação da precipitação.
Pela queima de combustíveis fósseis a altas pressões e temperaturas na presença de nitrogênio do ar, temos que na câmara de combustão dos motores, ocorre:
O óxido de nitrogênio formado, instável nas condições atmosféricas normais, na presença do oxigénio do ar, produz:
O dióxido de nitrogênio formado, na presença de água líquida nas gotículas das nuvens, nevoeiros e outras formas de condensação atmosférica, produz por adição do íon hidroxila (NO2 + OH· → HNO3)[6]:
Mecanismos de precipitação
A deposição da precipitação ácida ocorre essencialmente pela via úmida, tendo a deposição seca um papel secundário (exceto nas proximidades de instalações industriais que emitam grandes volumes de partículas para o ar).
A deposição pela via úmida ocorre quando alguma forma de precipitação (chuva, neve, granizo ou outra) remova os compostos ácidos da atmosfera depositando-os sobre a superfície. Este tipo de precipitação pode resultar na precipitação das gotículas onde se formaram os ácidos ou do arraste pela precipitação de aerossóis existentes nas camadas atmosféricas atravessadas pela precipitação em queda.
Apesar de menos significativa, a deposição a seco, isto é aquela que ocorre na ausência de precipitação, representa cerca de 20 a 40% da deposição ácida total nas regiões industrializadas[19]. Para além da deposição de material sólido em suspensão no ar, este tipo de deposição também inclui a aderência e adsorção de partículas e gases na superfície da vegetação, nos solos e materiais geológicos e nas estruturas construídas.