PROFESSOR

PAULO CESAR

PORTAL DE ESTUDOS EM QUÍMICA
 

DICAS PARA O SUCESSO NO VESTIBULAR: AULA ASSISTIDA É AULA ESTUDADA - MANTER O EQUILÍBRIO EMOCIONAL E O CONDICIONAMENTO FÍSICO - FIXAR O APRENDIZADO TEÓRICO ATRAVÉS DA RESOLUÇÃO DE EXERCÍCIOS.

Home
Fusão Nuclear
Fissão Nuclear

 

FUSÃO NUCLEAR

Três fases da reação de fusão nuclear:
1 - o deutério e o trítio são acelerados até uma velocidade que permita o início da reação.
2 - é criado um núcleo instável de He-5.
3 - a ejeção de um nêutron e a expulsão de um núcleo de He-4.

Índice

bulletDefinição
bullet Requisitos para Fusão
bullet Projetos em andamento
bullet Bomba de Nêutrons

Definição

Fusão Nuclear - é o processo no qual dois ou mais núcleos atômicos se juntam e formam um outro núcleo de maior número atômico. A fusão nuclear requer muita energia para acontecer, e geralmente liberta muito mais energia que consome. Quando ocorre com elementos mais leves que o ferro e o níquel (que possuem as maiores forças de coesão nuclear de todos os átomos, sendo portanto mais estáveis) ela geralmente liberta energia, e com elementos mais pesados ela consome. Até hoje início do século XXI, o ser humano ainda não conseguiu encontrar uma forma de controlar a fusão nuclear como acontece com a fissão.

O principal tipo de fusão que ocorre no interior das estrelas é o de Hidrogênio em Hélio, onde dois prótons se fundem em uma partícula alfa (um núcleo de hélio), liberando dois pósitrons, dois neutrinos e energia. Mas dentro desse processo ocorrem várias reações individuais, que variam de acordo com a massa da estrela. Para estrelas do tamanho do nosso Sol ou menores, a cadeia próton-próton é a reação dominante. Em estrelas mais pesadas, predomina o ciclo CNO.

Vale ressaltar que há conservação da energia, e, portanto, pode-se calcular a massa dos quatro prótons e o núcleo de hélio, e subtrair a soma das massas das partículas iniciais daquela do produto desta reação nuclear para calcular a massa/energia emitida.

Utilizando a equação E= m . c², pode-se calcular a energia liberada, oriunda da diferença de massa. Uma vez que o valor de c é muito grande (aprox. 3×108 m/s), mesmo uma massa muito pequena corresponde a uma enorme quantidade de energia. É este fato que levou muitos engenheiros e cientistas a iniciar projetos para o desenvolvimento de reatores de fusão (Tokamaks) para gerar eletricidade (por exemplo, a fusão de poucos cm3 de deutério, um isótopo de hidrogênio, produziria uma energia equivalente àquela produzida pela queima de 20 toneladas de carvão).

 

Requisitos para a fusão

Uma substancial barreira de energia deve ser vencida antes que a fusão possa ocorrer. A grandes distâncias, dois núcleos expostos se repelem mutuamente devido à força eletrostática que atua entre seus prótons positivamente carregados. Se os núcleos puderem ser aproximados suficientemente, porém, a barreira eletrostática pode ser sobrepujada pela força nuclear forte a qual é mais poderosa a curta distância do que a repulsão eletromagnética.

Quando um núcleo tal como o próton ou nêutron é adicionado a um núcleo, ele é atraído pelos outros núcleos, mas principalmente por seus vizinhos imediatos devido à força de curto alcance. Os núcleos no interior do núcleo têm mais vizinhos do que aqueles na sua superfície. Desde que núcleos menores têm uma grande razão de superfície para volume, a energia de ligação por núcleo devido à força nuclear forte geralmente aumenta como o aumento do tamanho do núcleo, mas atinge um valor limite que corresponde à vizinhança do núcleo totalmente preenchida.

A força eletrostática, por outro lado, é uma força proporcional ao inverso do quadrado da distância; então, um próton adicionado ao núcleo ira sentir uma repulsão eletrostática de todos os prótons no núcleo. A energia eletrostática por núcleo devido à força eletrostática irá portanto aumentar independentemente do tamanho do núcleo.

O resultado combinado destas duas forças opostas é que a energia de ligação por núcleo geralmente aumenta com o aumento de tamanho do átomo, para elementos até com núcleo do tamanho de ferro e níquel, e diminui para núcleos mais pesados. Eventualmente, a energia de ligação se torna negativa e núcleos muitos pesados não são estáveis. Os quatro núcleos blindados mais compactos, em ordem decrescente de energia de ligação, são 62Ni, 58Fe, 56Fe, e 60Ni. Embora o isótopo do Níquel 62Ni seja o mais estável, o isótopo do Ferro 56Fe é uma ordem de magnitude mais comum. Isto é devido em grande parte à grande razão de desintegração do 62Ni no interior de estrelas conduzida pela absorção de fótons.

Uma notável exceção a esta regra geral é o núcleo do hélio-4, cuja energia de ligação é maior que a do lítio, o próximo elemento mais pesado. O princípio de exclusão de Pauli provê um explicação para este comportamento excepcional – isto se dá porque os prótons e nêutrons são férmions, eles não podem coexistir exatamente no mesmo estado. Cada estado energético de um próton ou nêutron em um núcleo pode acomodar uma partícula de spin para abaixo e outra de spin para acima. O Hélio-4 tem uma banda de energia de ligação anormalmente grande porque seu núcleo consiste de dois prótons e dois nêutrons; então todos os núcleos dele podem estar em um estado fundamental. Qualquer núcleo adicional deverá ir para um estado energético alto.

A situação é similar se dois núcleos são colocados juntos. Ao se aproximarem, todos os prótons em um núcleo repelem todos os prótons do outro, até o ponto em que os dois núcleos entrem em contato para que a força nuclear forte domine. Consequentemente, mesmo quando o estado de energia final é mais baixo, há uma grande barreira energética que deve ser ultrapassada primeiro. Na química, este fato é conhecido como energia de ativação. Em física nuclear ele é chamado de barreira de Coulomb.

A barreira de Coulomb é menor para os isótopos do hidrogênio – eles contêm uma única carga positiva em seus núcleos. Um bipróton não é estável, então os nêutrons devem ser envolvidos, de forma a produzir um núcleo de hélio.

Usando combustível deutério-trítio, a barreira de energia resultante é de cerca de 0,1 MeV. Em comparação, a energia necessária para remover um elétron do hidrogênio é 13,6 eV, cerca 7.500 vezes menos energia. O resultado (intermediário) da fusão é um núcleo instável de 5He, o qual imediatamente ejeta um nêutron com 14,1 MeV. A energia recuperada do núcleo de 4He remanescente é 3,5 MeV, então a energia total liberada é 17,6 MeV. Isto é muitas vezes mais que a barreira de energia a ser transposta.

Se a energia para iniciar a reação vem da aceleração de um núcleo, o processo é chamado de fusão por projétil-alvo; se ambos os núcleos são acelerados, isto é fusão projétil|projétil. Se o núcleo faz parte de um plasma próximo ao equilíbrio térmico, denominamos fusão termonuclear. A temperatura é uma medida da energia cinética média das partículas, então por aquecimento o núcleo deverá ganhar energia e eventualmente transpor a barreira de 0,1 MeV. A conversão das unidade entres elétron-volts e kelvins mostra que esta barreira será transposta quando a temperatura ultrapassar 1 GK, obviamente uma temperatura muito alta.

Há dois fatos que podem diminuir a temperatura necessária. Um é o fato que a temperatura é uma média da energia cinética, implicando que alguns núcleos a esta temperatura poderão já ter uma energia maior que 0,1 MeV, enquanto outros um pouco menos. Estes núcleos na faixa de alta-energia da distribuição de velocidade participam da maioria das reações de fusão. O outro efeito é o tunelamento quântico. O núcleo não precisa sempre ter bastante energia, podendo atravessar, por efeito túnel, a barreira restante. Por esta razão, combustíveis a temperaturas menores podem experimentar eventos de fusão, a uma taxa mais baixa.

 

A fusão de reação de deutério-trítio aumenta sua taxa rapidamente com a temperatura até ela se maximizar a 70 keV. (800 milhões kelvins) e então gradualmente descende.

 

A seção transversal da reação σ é uma medida da probabilidade de reação de fusão com uma função da velocidade relativa dos dois núcleos reativos. Se os núcleos têm uma distribuição de velocidade, isto é, uma distribuição térmica com a fusão termonuclear, então eles são úteis para obter uma média sobre a distribuição dos produtos da seção transversal e da velocidade. A taxa de reação (fusão por volume por tempo) é <σv> vezes o produto da densidade dos participantes:

f = n_1 n_2 \langle \sigma v \rangle

Se um tipo de núcleo está reagindo com si próprio, tal como a reação PP, então o produto n1n2 pode ser substituído por (1 / 2)n2.

\langle \sigma v \rangle aumenta de praticamente zero a temperatura ambiente para um significativo valor a temperatura de 10 - 100 keV. A estas temperaturas, bem abaixo da energia de ionização típica (13,6 eV no caso do hidrogênio), os reativos da fusão existem um estado de plasma.

O significado de <σv> como uma função da temperatura em um experimento com uma energia de tempo confinamento é determinado pela utilização do critério de Lawson.

 

Projetos em andamento

Existem diversos projetos em andamento ao redor do mundo, com a finalidade de obter o domínio da tecnologia de fusão nuclear para fins de geração controlada de energia elétrica.

Um dos projetos em andamento é o ITER (International Thermonuclear Experimental Reator), baseado na tecnologia do Tokamak. O financiamento internacional deste projeto ultrapassa a barreira dos 10 bilhões de dólares.

Outras abordagens alternativas para tentar chegar ao domínio da fusão nuclear são estudadas por diversos cientistas. Alguns exemplos são a tecnologia de focus fusion, desenvolvida pelo físico Eric Lerner; a fusão por bolhas (sonofusion); e o confinamento eletrostático-inercial (IEC), proposto por Robert Bussard.

 

Bomba de Nêutrons

A bomba de nêutrons é uma variante da bomba atômica. Em geral, é um dispositivo termonuclear pequeno, com corpo de níquel ou cromo, onde os nêutrons gerados na reação de fusão intencionalmente não são absorvidos pelo interior da bomba, mas se permite que escapem. As emissões de raios-X e de nêutrons de alta energia são seu principal mecanismo destrutivo. Os nêutrons são mais penetrantes que outros tipos de radiação, de tal forma que muitos materiais de proteção que bloqueiam raios gama são pouco eficientes contra eles. A bomba de nêutrons tem ação destrutiva apenas sobre organismos vivos, mantendo, por exemplo, a estrutura de uma cidade intacta. Isso pode representar uma vantagem militar, visto que existe a possibilidade de se eliminar os inimigos e apoderar-se de seus recursos.

Os efeitos de uma explosão nuclear podem ser divididos nas categorias: a explosão propriamente dita, a radiação térmica, a radiação nuclear direta e a indireta.

A explosão

A explosão consiste em uma onda de choque que se espalha na forma de uma esfera com raio crescente. Esta onda de choque nada mais é do que uma oscilação da pressão do ar, ou seja, um aumento seguido de uma diminuição, ambos muitos rápidos. Por exemplo, a uma distância de 1 km, uma explosão de uma bomba atômica (fissão nuclear) de 20 quiloton provoca uma variação na pressão da ordem de uma atmosfera. Isso é suficiente para destruir construções de concreto, como casas e prédios. Uma bomba termonuclear (fusão nuclear), pode chegar a até 10 megaton (= 10.000 quiloton). 1 quiloton significa 1.000 toneladas de explosivo TNT (trinitrotolueno), o que equivale a 1012 calorias, ou 4.184 × 1012 J de energia. A densidade de energia que a onda de choque carrega diminui com o inverso do quadrado da distância (1/r²), por um fator puramente geométrico. A 2 km de distância, a mesma bomba atômica provoca uma onda de choque com uma variação de 0,25 atmosferas, o que é suficiente para destruir casas de madeiras e atirar escombros a mais de 360 km/h.

 

A radiação térmica

O outro efeito destruidor das armas nucleares é o calor que ela libera. Este, porém sofre mais diminuição do que a onda de choque. Pois além do fator geométrico 1/r² ainda há a absorção e espalhamento da radiação térmica pelo meio. Mesmo assim, a 2 km de distância, uma bomba atômica de 20 quilotons ainda provoca queimaduras de terceiro grau nas pessoas e é capaz de incendiar materiais inflamáveis como madeira e tecidos. No local da explosão, a bola de fogo se forma tão rapidamente que provoca ventos de 180 a 360 km/h, o que espalha mais ainda o incêndio causado. Este efeito não é uma exclusividade das bombas nucleares. Estas apenas têm uma maior intensidade. Novamente, para se ter uma idéia, com uma única bomba termonuclear (fusão nuclear) é possível, considerando os dois efeitos já descritos, destruir completamente uma área circular com raio de 10 km. Com uma explosão nuclear, nêutrons e radiação g são emitidos. Ambos decrescem com 1/r2 e a distância na qual são letais é a mesma para as ondas de choque e térmica. Os efeitos desta radiação são o aparecimento de várias doenças, como tipos variados de câncer e modificações genéticas. Estas modificações se devem a troca das bases nitrogenadas na seqüência da molécula do DNA (ácido desoxirribonucléico).

 

A radiação nuclear direta

Um outro efeito exclusivo de bombas atômicas é devido aos elementos radioativos que são liberados na explosão. Eles são vaporizados devido ao calor liberado e vão para a atmosfera formando nuvens carregadas com elementos radiativos, as chamadas nuvens radiativas. Estas podem circular durante anos. Nas chuvas, estes elementos caem e se infiltram no solo, entrando em contato com o lençol freático. Quando essa água é absorvida pela vegetação, os elementos radiativos vão junto. Em seguida esses elementos podem chegar ao organismo do homem de várias maneiras diferentes. Uma delas é o homem ingerir diretamente alimentos vegetais contaminados. Outra, é o homem comer carne de animais que se alimentaram de vegetação contaminada. Uma vez os elementos estando no corpo humano, ele vai se acumulando, pois não é liberado. Cada elemento pode ter um efeito danoso particular. O 90-Sr (estrôncio) por exemplo é muito similar ao cálcio. Devido a isso, ele se acumula facilmente no tecido ósseo do corpo humano. Assim, a pessoa fica com o esqueleto extremamente fraco e debilitado, podendo quebrar algum osso muito facilmente, além de ficar muito propenso a ter câncer nesses tecidos. Eliminando o material físsil de uma bomba termonuclear, é possível fazer uma bomba com uma explosão limpa, que não provocará chuva radioativa no futuro, e seus efeitos nocivos.

 

A radiação nuclear indireta

Podemos ainda citar outro efeito exclusivo de bombas nucleares. Além da radiação g, há uma grande emissão de raios X. Essas duas radiações interagem com as moléculas da atmosfera (por efeito Compton e ionização) criando uma grande corrente de elétrons que se espalha a partir do ponto de explosão. Estes elétrons são acelerados pelo campo magnético da Terra gerando ondas eletromagnéticas na forma de um pulso. Tal pulso pode gerar um colapso na rede elétrica de uma cidade impossibilitando qualquer uso de energia elétrica. Esse é o chamado efeito PEM (pulso eletromagnético).

 

Como funcionam as Bombas de Nêutrons

A bomba de nêutron é uma bomba nuclear, melhor dizendo, termonuclear, que após uma reação de fusão entre os elementos que compõem a bomba os nêutrons não são absorvidos pela reação, o que permite que eles escapem com uma alta energia, bem como os raios-X que também são gerado nessa fusão nuclear.

re_elem_transuranicos_3

O nêutron, em altíssima energia gerada pela reação nuclear, é mais penetrante que outros tipos de radiação, como a radiação gama, então ela penetra em locais onde possa existir blindagem contra radiações.

A bomba de nêutron só tem ação sobre organismos vivos, o que dão as vantagens citadas acima para o exercito que a tem. Daí você me pergunta: Como assim ela só tem ação em organismos vivos? Bom, os nêutrons não sabem o que é vivo ou não, o que acontece é que eles atingem a nível celular, ou seja, eles matam as células, e só têm célula os organismos vivos. Por exemplo, se uma bomba for lançada sobre Brasília, todos os prédios, carros, o Congresso, a Granja do Torto, permanecerão intactos. Porém, todas as pessoas, plantas e animais que lá estiverem, morrerão. Permaneceria intacta, de igual modo, a estrutura do corpo humano que for atingido pelos nêutrons. As pessoas não se desintegrariam ou virariam pó (como alguns poderiam imaginar)(com exceção daquelas que estiverem no epicentro da bomba), o individuo morreria porque todas as suas células estariam mortas, mas o seu corpo permaneceria intacto assim como as edificações do local.

A radiação dos nêutrons são dispersos, isto é, perde sua força, em um raio de 1,7km e desaparecem rapidamente.

O conceito da bomba de nêutron desenvolvido criado em 1958 por Samuel Cohen e testado em 1963, contra a vontade do presidente Kennedy. Em 1978 seu desenvolvimento foi adiado pelo presidente Jimmy Carter mas foi retomado em 1981 pelo presidente Ronald Reagan.

31983

31989

 

Eliminando o 238U, essas bombas 'reduzem' o seu poder para a faixa dos quilotons. Quando ativadas, elas produzem um intenso feixe de nêutrons, que carregam uma dose letal de radiação. Estima-se que uma bomba de nêutrons de 1 quiloton sujeita o homem, protegido com colete, a uma distância de 1 km a uma dose de 103 rads. Isso é suficiente para matar em um prazo de poucos dias. Essas bombas de nêutrons tiveram um objetivo específico quando projetadas. Por exemplo, se um exército inimigo invadir um território, uma bomba de nêutrons poderia ser detonada, matando todo o contingente inimigo, porém, deixando intacto as construções (prédios, casas, etc). Pois já que, por outro lado, uma bomba termonuclear normal destruiria todo o território, ao invés de salvá-lo.

 

 

 

 

Home | Fusão Nuclear | Fissão Nuclear

Este site foi atualizado em 13/01/11